Группа ВКонтакте https://vk.com/fizmathim_resh

Перейти на Готовые решения ИДЗ Рябушко (по вариантам)

Решение задач по высшей математике на заказ

Перейти на Бесплатные решенные примеры по высшей математике

ИДЗ 13.3 - Вариант 0

1. Вычислить массу неоднородной пластины D, ограниченной заданными линиями, если поверхностная плотность в каждой ее точке μ = μ (x, y)

1.0. D:
$$x = 0$$
, $y = 3x$, $x + y = 3$, $\mu = 3 - x - y$

Для вычисления массы m плоской пластины заданной поверхностной плотностью µ воспользуемся физическим смыслом двойного интеграла

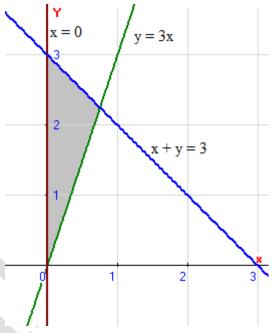
$$m = \iint_{D} \mu(x, y) dS$$
$$m = \iint_{D} (3 - x - y) dxdy$$

и формулой

где область интегрирования D изображена на рис.

Найдем абсциссы точек пересечения

$$3x = 3 - x \Rightarrow 4x = 3 \Rightarrow x = \frac{3}{4}$$



Представим записанный двойной интеграл в виде повторного:

$$\begin{split} m &= \iint\limits_{D} (3-x-y) dx dy = \int\limits_{0}^{\frac{3}{4}} dx \int\limits_{3x}^{3-x} (3-x-y) dy = \int\limits_{0}^{\frac{3}{4}} dx \cdot \left(3y-xy-\frac{y^2}{2}\right) \bigg|_{3x}^{3-x} = \\ &= \int\limits_{0}^{\frac{3}{4}} dx \cdot \left(3(3-x)-x(3-x)-\frac{(3-x)^2}{2}-\left(3\cdot 3x-x\cdot 3x-\frac{(3x)^2}{2}\right)\right) = \\ &= \int\limits_{0}^{\frac{3}{4}} dx \cdot \left(9-3x-3x+x^2-\frac{9-6x+x^2}{2}-9x+3x^2+\frac{9x^2}{2}\right) = \int\limits_{0}^{\frac{3}{4}} dx \cdot \left(9-6x+x^2-\frac{9}{2}+3x-\frac{x^2}{2}-9x+3x^2+\frac{9x^2}{2}\right) = \\ &= \int\limits_{0}^{\frac{3}{4}} \left(\frac{9}{2}+8x^2-12x\right) dx = \left(\frac{9}{2}x+\frac{8x^3}{3}-6x^2\right) \bigg|_{0}^{\frac{3}{4}} = \left(\frac{9}{2}\cdot\frac{3}{4}+\frac{8}{3}\cdot\left(\frac{3}{4}\right)^3-6\cdot\left(\frac{3}{4}\right)^2\right) - \left(\frac{9}{2}\cdot0+\frac{8}{3}\cdot0^3-6\cdot0^2\right) = \\ &= \frac{27}{8}+\frac{9}{8}-\frac{27}{8}=\frac{9}{8} \end{split}$$

Группа ВКонтакте https://vk.com/fizmathim_resh

Перейти на Готовые решения ИДЗ Рябушко (по вариантам)

Решение задач по высшей математике на заказ

Перейти на Бесплатные решенные примеры по высшей математике

2. Вычислить статический момент однородной пластины D, ограниченной данными линиями, относительно указанной оси, использовав полярные координаты.

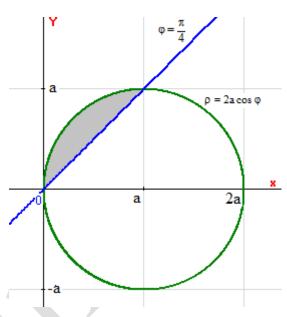
2.0. D:
$$x^2 + y^2 - 2ax = 0$$
, $x - y \le 0$, Oy

Преобразуем уравнение окружности

$$x^2 + y^2 - 2ax = 0$$

$$x^2 - 2ax + a^2 - a^2 + y^2 = 0$$

$$(x-a)^2 + y^2 = a^2$$



Получили окружность с центром в точке (a; 0), радиусом R = a Статический момент пластинки D относительно оси Oy определяется выражением

$$M_y = \iint_D x \mu(x, y) dxdy$$

Перейдем к полярным координатам р, ф

В полярной системе координат область D преобразуется в область D'

$$x = \rho \cos \varphi$$
, $y = \rho \sin \varphi$, $x^2 + y^2 = \rho^2$

$$x^{2} + y^{2} - 2ax = 0 \Rightarrow \rho^{2} \cos^{2} \phi + \rho^{2} \sin^{2} \phi = 2a\rho \cos \phi \Rightarrow \rho^{2} (\cos^{2} \phi + \sin^{2} \phi) = 2a\rho \cos \phi \Rightarrow$$

$$\Rightarrow \rho^2 = 2a\rho\cos\phi \Rightarrow \rho = 2a\cos\phi$$

$$x - y \le 0 \Rightarrow \rho \cos \varphi - \rho \sin \varphi \le 0 \Rightarrow \rho \sin \varphi \le \rho \cos \varphi \Rightarrow tg\varphi \le 1 \Rightarrow \varphi \le \frac{\pi}{4}$$

где
$$0 \le \rho \le 2a\cos\varphi$$
; $\pi/4 \le \varphi \le \pi/2$; $dxdy = \rho d\rho d\varphi$; $xdxdy = \rho^2\cos\varphi d\rho d\varphi$

Тогда

$$M_y = \iint\limits_{D} x dx dy = \iint\limits_{D'} \rho^2 \cos \phi d\rho \, d\phi = \int\limits_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos \phi d\phi \int\limits_{0}^{2a \cos \phi} \rho^2 d\rho = \int\limits_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos \phi d\phi \cdot \frac{\rho^3}{3} \bigg|_{0}^{2a \cos \phi} = \int\limits_{0}^{2a \cos \phi} \rho^2 d\phi = \int\limits_{0}^{\frac{\pi}{2}} \rho^2 \cos \phi d\phi \cdot \frac{\rho^3}{3} \bigg|_{0}^{2a \cos \phi} = \int\limits_{0}^{2a \cos \phi} \rho^2 d\phi = \int\limits_{0}^{2a \cos \phi} \rho^2 d\phi$$

$$= \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos \varphi d\varphi \cdot \left(\frac{(2a\cos\varphi)^3}{3} - \frac{0^3}{3} \right) = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{8a^3\cos^3\varphi}{3} \cdot \cos \varphi d\varphi = \frac{8a^3}{3} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos^4\varphi d\varphi = \frac{8a^3}{3} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(\frac{1 + \cos 2\varphi}{2} \right)^2 d\varphi = \frac{8a^3}{3} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos^4\varphi d\varphi = \frac{8a^3}{3} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(\frac{1 + \cos 2\varphi}{2} \right)^2 d\varphi = \frac{8a^3}{3} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos^4\varphi d\varphi = \frac{8a^3}{3} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(\frac{1 + \cos 2\varphi}{2} \right)^2 d\varphi = \frac{8a^3}{3} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos^4\varphi d\varphi = \frac{8a^3}{3} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(\frac{1 + \cos 2\varphi}{2} \right)^2 d\varphi = \frac{8a^3}{3} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos^4\varphi d\varphi = \frac{8a^3}{3} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(\frac{1 + \cos 2\varphi}{2} \right)^2 d\varphi = \frac{8a^3}{3} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(\frac{1 + \cos 2\varphi}{2} \right)^2 d\varphi = \frac{8a^3}{3} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(\frac{1 + \cos 2\varphi}{2} \right)^2 d\varphi = \frac{8a^3}{3} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(\frac{1 + \cos 2\varphi}{2} \right)^2 d\varphi = \frac{8a^3}{3} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(\frac{1 + \cos 2\varphi}{2} \right)^2 d\varphi = \frac{8a^3}{3} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(\frac{1 + \cos 2\varphi}{2} \right)^2 d\varphi = \frac{8a^3}{3} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(\frac{1 + \cos 2\varphi}{2} \right)^2 d\varphi = \frac{8a^3}{3} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(\frac{1 + \cos 2\varphi}{2} \right)^2 d\varphi = \frac{8a^3}{3} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(\frac{1 + \cos 2\varphi}{2} \right)^2 d\varphi = \frac{8a^3}{3} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(\frac{1 + \cos^2\varphi}{2} \right)^2 d\varphi = \frac{8a^3}{3} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(\frac{1 + \cos^2\varphi}{2} \right)^2 d\varphi = \frac{8a^3}{3} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(\frac{1 + \cos^2\varphi}{2} \right)^2 d\varphi = \frac{8a^3}{3} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(\frac{1 + \cos^2\varphi}{2} \right)^2 d\varphi = \frac{8a^3}{3} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(\frac{1 + \cos^2\varphi}{2} \right)^2 d\varphi = \frac{8a^3}{3} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(\frac{1 + \cos^2\varphi}{2} \right)^2 d\varphi = \frac{8a^3}{3} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(\frac{1 + \cos^2\varphi}{2} \right)^2 d\varphi = \frac{8a^3}{3} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(\frac{1 + \cos^2\varphi}{2} \right)^2 d\varphi = \frac{8a^3}{3} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(\frac{1 + \cos^2\varphi}{2} \right)^2 d\varphi = \frac{8a^3}{3} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(\frac{1 + \cos^2\varphi}{2} \right)^2 d\varphi = \frac{8a^3}{3} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(\frac{1 + \cos^2\varphi}{2} \right)^2 d\varphi = \frac{8a^3}{3} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(\frac{1 + \cos^2\varphi}{2} \right)^2 d\varphi = \frac{8a^3}{3} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(\frac{1 + \cos^2\varphi}{2} \right)^2 d\varphi = \frac{8a^3}{3} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(\frac{1 + \cos^2\varphi}{2} \right)^2 d\varphi = \frac{8a^3}{3} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(\frac{1 + \cos^2\varphi}{2} \right)^2 d\varphi = \frac{8a^$$

$$=\frac{8a^{3}}{3}\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(\frac{1+2\cos 2\phi+\cos^{2} 2\phi}{4}\right) d\phi = \frac{2a^{3}}{3}\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(1+2\cos 2\phi+\cos^{2} 2\phi\right) d\phi =$$

Группа ВКонтакте https://vk.com/fizmathim_resh

Перейти на Готовые решения ИДЗ Рябушко (по вариантам)

Решение задач по высшей математике на заказ

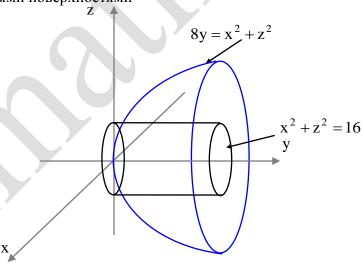
Перейти на Бесплатные решенные примеры по высшей математике

$$\begin{split} &=\frac{2a^3}{3}\int\limits_{\frac{\pi}{4}}^{\frac{\pi}{2}}\!\!\left(1+2\cos2\phi+\frac{1}{2}\left(1+\cos4\phi\right)\right)\!\!d\phi = \frac{2a^3}{3}\int\limits_{\frac{\pi}{4}}^{\frac{\pi}{2}}\!\!\left(\frac{3}{2}+2\cos2\phi+\frac{\cos4\phi}{2}\right)\!\!d\phi = \\ &=\frac{2a^3}{3}\left(\frac{3}{2}\phi+2\cdot\frac{1}{2}\sin2\phi+\frac{1}{4}\cdot\frac{\sin4\phi}{2}\right)\!\!\bigg|_{\frac{\pi}{4}}^{\frac{\pi}{2}} = \frac{2a^3}{3}\left(\frac{3}{2}\phi+\sin2\phi+\frac{\sin4\phi}{8}\right)\!\!\bigg|_{\frac{\pi}{4}}^{\frac{\pi}{2}} = \\ &=\frac{2a^3}{3}\left(\frac{3}{2}\cdot\frac{\pi}{2}+\sin\left(2\cdot\frac{\pi}{2}\right)+\frac{\sin\left(4\cdot\frac{\pi}{2}\right)}{8}\right)\!\!-\frac{2a^3}{3}\left(\frac{3}{2}\cdot\frac{\pi}{4}+\sin\left(2\cdot\frac{\pi}{4}\right)+\frac{\sin\left(4\cdot\frac{\pi}{4}\right)}{8}\right) = \\ &=\frac{2a^3}{3}\cdot\frac{3}{4}\pi-\frac{2a^3}{3}\cdot\frac{3}{8}\pi-\frac{2a^3}{3}\cdot1=\frac{a^3\pi}{2}-\frac{a^3\pi}{4}-\frac{2a^3}{3}=\frac{a^3\pi}{4}-\frac{2a^3}{3} \end{split}$$

3. Вычислить координаты центра масс однородного тела, занимающего область V, ограниченную указанными поверхностями.

3.0. V:
$$8y = x^2 + z^2$$
, $x^2 + z^2 = 16$, $y = 0$

Строим тело, ограниченное данными поверхностями



Так как тело симметричное относительно оси Oy, то можно сразу записать, что $x_C = 0$ и $z_C = 0$ Тогда координата центра масс этого тела определяется по формуле:

$$y_{C} = \frac{\iiint\limits_{V} y \, dx dy \, dz}{\iiint\limits_{V} dx dy \, dz}$$

Величина $M_y = \iiint\limits_V y dxdydz$ называется статическим моментом тела относительно координатной

плоскости Oxz.

Перейдем к цилиндрическим координатам ρ , ϕ , у по формулам, в которых для данной области $x = \rho \cos \phi, \ z = \rho \sin \phi, \ y = y, \ x^2 + z^2 = \rho^2$

Группа ВКонтакте https://vk.com/fizmathim_resh

Перейти на Готовые решения ИДЗ Рябушко (по вариантам)

Решение задач по высшей математике на заказ

Перейти на Бесплатные решенные примеры по высшей математике

Радиус проекции линий пересечения поверхностей

$$8y = x^2 + z^2$$
, $x^2 + z^2 = 16 \Rightarrow \rho^2 = 16 \Rightarrow \rho = 4$

$$y = \frac{\rho^2}{8}$$

где $0 \le \rho \le 4$; $0 \le \phi \le 2\pi$; $0 \le y \le 1/8\rho^2$;

 $J = \rho$, $dxdydz = \rho d\rho d\phi dy$

Тогда

$$\iiint\limits_{V} y \, dx dy \, dz = \iiint\limits_{V'} \rho y \, d\rho d\phi dy = \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{4} d\rho \int\limits_{0}^{\frac{\rho^{2}}{8}} \rho y \, dy = \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{4} \rho d\rho \cdot \frac{y^{2}}{2} \bigg|_{0}^{\frac{\rho^{2}}{8}} = \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{4} \rho d\rho \cdot \left(\left(\frac{\rho^{2}}{8} \right)^{2} \cdot \frac{1}{2} - \frac{0^{2}}{2} \right) = 0$$

$$=\int_{0}^{2\pi} d\varphi \int_{0}^{4} \rho d\rho \cdot \frac{\rho^{4}}{128} = \frac{1}{128} \int_{0}^{2\pi} d\varphi \int_{0}^{4} \rho^{5} d\rho = \frac{1}{128} \int_{0}^{2\pi} d\varphi \cdot \frac{\rho^{6}}{6} \bigg|_{0}^{4} = \frac{1}{768} \int_{0}^{2\pi} d\varphi \cdot \left(4^{6} - 0^{6}\right) = \frac{1}{768} \int_{0}^{2\pi} d\varphi \cdot 4096 = \frac{1}{128} \int_{0}^{2\pi} d\varphi \cdot \frac{\rho^{6}}{6} \bigg|_{0}^{4} = \frac{1}{768} \int_{0}^{2\pi} d\varphi \cdot \frac{\rho^{6}}{2$$

$$=\frac{4096}{768}\int_{0}^{2\pi}d\phi=\frac{16}{3}\phi\bigg|_{0}^{2\pi}=\frac{16}{3}\cdot\left(2\pi-0\right)=\frac{32}{3}\pi$$

$$\iiint\limits_{V} dx dy dz = \iiint\limits_{V'} \rho d\rho d\phi dy = \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{4} d\rho \int\limits_{0}^{\frac{\rho^{2}}{8}} \rho dy = \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{4} \rho d\rho \cdot y \bigg|_{0}^{\frac{\rho^{2}}{8}} = \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{4} \rho d\rho \cdot \left(\frac{\rho^{2}}{8} - 0\right) = \frac{1}{8} \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{4} \rho^{3} d\rho = \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{4} \rho d\rho \cdot y \bigg|_{0}^{2\pi} = \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{4} \rho d\rho \cdot y \bigg|_{0}^{2\pi} = \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{4} \rho d\rho \cdot y \bigg|_{0}^{2\pi} = \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{4} \rho d\rho \cdot y \bigg|_{0}^{2\pi} = \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{4} \rho d\rho \cdot y \bigg|_{0}^{2\pi} = \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{4} \rho d\rho \cdot y \bigg|_{0}^{2\pi} = \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{4} \rho d\rho \cdot y \bigg|_{0}^{2\pi} = \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{4} \rho d\rho \cdot y \bigg|_{0}^{2\pi} = \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{4} \rho d\rho \cdot y \bigg|_{0}^{2\pi} = \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{4} \rho d\rho \cdot y \bigg|_{0}^{2\pi} = \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{4} \rho d\rho \cdot y \bigg|_{0}^{2\pi} = \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{4} \rho d\rho \cdot y \bigg|_{0}^{2\pi} = \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{4} \rho d\rho \cdot y \bigg|_{0}^{2\pi} = \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{4} \rho d\rho \cdot y \bigg|_{0}^{2\pi} = \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{4} \rho d\rho \cdot y \bigg|_{0}^{2\pi} = \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{4} \rho d\rho \cdot y \bigg|_{0}^{2\pi} = \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{4} \rho d\rho \cdot y \bigg|_{0}^{2\pi} = \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{4} \rho d\rho \cdot y \bigg|_{0}^{2\pi} = \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{4} \rho d\rho \cdot y \bigg|_{0}^{2\pi} = \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{4} \rho d\rho \cdot y \bigg|_{0}^{2\pi} = \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{4} \rho d\rho \cdot y \bigg|_{0}^{2\pi} = \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{4} \rho d\rho \cdot y \bigg|_{0}^{2\pi} = \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{4} \rho d\rho \cdot y \bigg|_{0}^{2\pi} = \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{4} \rho d\rho \cdot y \bigg|_{0}^{2\pi} = \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{4} \rho d\rho \cdot y \bigg|_{0}^{2\pi} = \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{4} \rho d\rho \cdot y \bigg|_{0}^{2\pi} = \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{4\pi} \rho d\rho \cdot y \bigg|_{0}^{2\pi} = \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{4\pi} \rho d\rho \cdot y \bigg|_{0}^{2\pi} = \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{4\pi} \rho d\rho \cdot y \bigg|_{0}^{2\pi} = \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{4\pi} \rho d\rho \cdot y \bigg|_{0}^{2\pi} = \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{2\pi} \rho d\rho \cdot y \bigg|_{0}^{2\pi} = \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{4\pi} \rho d\rho \cdot y \bigg|_{0}^{2\pi} = \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{2\pi} \rho d\rho \cdot y \bigg|_{0}^{2\pi} = \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{2\pi} \rho d\rho \cdot y \bigg|_{0}^{2\pi} = \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{2\pi} \rho d\rho \cdot y \bigg|_{0}^{2\pi} = \int\limits_{0}^{2\pi} \rho d\rho \int\limits_{0}^{2\pi} \rho d\rho \cdot y \bigg|_{0}^{2\pi} = \int\limits_{0}^{2\pi} \rho$$

$$=\frac{1}{8}\int_{0}^{2\pi}d\phi \cdot \frac{\rho^{4}}{4}\bigg|_{0}^{4}=\frac{1}{8}\int_{0}^{2\pi}d\phi \cdot \left(\frac{4^{4}}{4}-\frac{0^{4}}{4}\right)=\frac{1}{8}\int_{0}^{2\pi}d\phi \cdot \frac{256}{4}=8\int_{0}^{2\pi}d\phi=8\phi\bigg|_{0}^{2\pi}=8\cdot (2\pi-0)=16\pi$$

Следовательно

$$y_{C} = \frac{\iiint\limits_{V} y dx dy dz}{\iiint\limits_{W} dx dy dz} = \frac{\frac{32}{3}\pi}{16\pi} = \frac{2}{3}$$

И центр масс С(0; 2/3; 0)

Группа ВКонтакте https://vk.com/fizmathim_resh

Перейти на Готовые решения ИДЗ Рябушко (по вариантам)

Решение задач по высшей математике на заказ

Перейти на Бесплатные решенные примеры по высшей математике

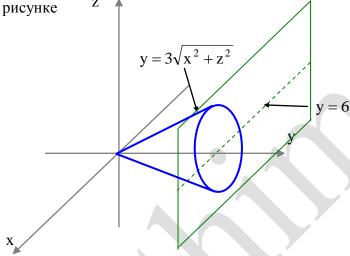
4. Вычислить момент инерции относительно указанной оси координат однородного тела, занимающего область V, ограниченную данными поверхностями. Плотность тела δ принять равной 1.

4.0. V:
$$y = 3\sqrt{x^2 + z^2}$$
, $y = 6$, Oy

Согласно формуле, искомый момент инерции относительно координатной оси Оу

$$I_{y} = \iiint_{Y} (x^{2} + z^{2}) \delta(x, y, z) dxdydz = \delta \iiint_{Y} (x^{2} + z^{2}) dxdydz$$

Область V изображена на рисунке



По условию следует принять плотность тела $\delta = 1$

Перейдем к цилиндрическим координатам р, ф, у по формулам, в которых для данной области

$$x = \rho \cos \varphi$$
, $z = \rho \sin \varphi$, $y = y$, $x^2 + z^2 = \rho^2$

$$3\sqrt{x^2 + z^2} = y \Rightarrow 3\sqrt{\rho^2 \cos^2 \phi + \rho^2 \sin^2 \phi} = y \Rightarrow 3\rho = y$$

$$6 = 3\sqrt{x^2 + z^2} \Rightarrow \rho = 2$$

где
$$0 \le \rho \le 2; \ 0 \le \phi \le 2\pi; \ 3\rho \le y \le 6;$$

$$J = \rho$$
, $dxdydz = \rho d\rho d\phi dy$

Тогда

$$\begin{split} &I_{y} = \delta \iiint_{V} \left(x^{2} + z^{2}\right) dxdydz = \iiint_{V} \rho \cdot \rho^{2} d\rho d\phi dy = \int_{0}^{2\pi} d\phi \int_{0}^{2} d\rho \int_{0}^{6} \rho^{3} dy = \int_{0}^{2\pi} d\phi \int_{0}^{2} \rho^{3} d\rho \cdot y \Big|_{3\rho}^{6} = \\ &= \int_{0}^{2\pi} d\phi \int_{0}^{2} \rho^{3} d\rho \cdot (6 - 3\rho) = 3 \int_{0}^{2\pi} d\phi \int_{0}^{2} \left(2\rho^{3} - \rho^{4}\right) d\rho = 3 \int_{0}^{2\pi} d\phi \cdot \left(\frac{2\rho^{4}}{4} - \frac{\rho^{5}}{5}\right) \Big|_{0}^{2} = 3 \int_{0}^{2\pi} d\phi \cdot \left(\frac{2^{4}}{2} - \frac{2^{5}}{5} - \left(\frac{0^{4}}{2} - \frac{0^{5}}{5}\right)\right) = \\ &= 3 \int_{0}^{2\pi} d\phi \cdot \left(8 - \frac{32}{5}\right) = 3 \int_{0}^{2\pi} d\phi \cdot \frac{8}{5} = \frac{24}{5} \int_{0}^{2\pi} d\phi = \frac{24}{5} \phi \Big|_{0}^{2\pi} = \frac{24}{5} \cdot (2\pi - 0) = \frac{48\pi}{5} \end{split}$$