Решение задач и примеров

Группа ВКонтакте https://vk.com/fizmathim_resh

Перейти на Готовые решения ИДЗ Рябушко (по вариантам)

Решение задач по высшей математике на заказ

Перейти на Бесплатные решенные примеры по высшей математике

ИДЗ 14.2 – Вариант 0

1. Показать, что данное выражение является полным дифференциалом функции u(x, y). Найти функцию u(x, y)

1.0.
$$(4x^3y^3 - y^2)dx + (3x^4y^2 - 2xy)dy$$

Проверим, выполняется ли условие полного дифференциала $\left(\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}\right)$ для функции u(x, y). Имеем:

$$P(x,y) = 4x^3y^3 - y^2$$
; $Q(x,y) = 3x^4y^2 - 2xy$

$$\frac{\partial P}{\partial y} = \frac{\partial}{\partial y} \left(4x^3y^3 - y^2 \right) = \left(4x^3y^3 \right)'_y - \left(y^2 \right)'_y = 4x^3 \cdot 3y^{3-1} - 2y^{2-1} = 12x^3y^2 - 2y$$

$$\frac{\partial Q}{\partial x} = \frac{\partial}{\partial x} \left(3x^4y^2 - 2xy \right) = \left(3x^4y^2 \right)'_x - \left(2xy \right)'_x = 3 \cdot 4x^{4-1}y^2 - 2y = 12x^3y^2 - 2y$$

Так как выполняется условие $\frac{\partial P}{\partial v} = \frac{\partial Q}{\partial x}$, то данное выражение является полным дифференциалом

функции u(x, y).

Положив $x_0 = 1$, $y_0 = 1$, по формуле (1) найдем u(x, y)

$$u(x, y) = \int_{x_0}^{x} P(x, y_0) dx + \int_{y_0}^{y} Q(x, y) dy + C$$

Вычисляем:

$$u(x,y) = \int_{1}^{x} (4x^{3} \cdot 1^{3} - 1^{2}) dx + \int_{1}^{y} (3x^{4}y^{2} - 2xy) dy = \int_{1}^{x} (4x^{3} - 1) dx + \int_{1}^{y} (3x^{4}y^{2} - 2xy) dy = \left(\frac{4x^{4}}{4} - x\right)\Big|_{1}^{x} + \left(\frac{4x^{3}}{4} - x\right)\Big|_{1}^{y}$$

$$+\left(\frac{3x^{4}y^{3}}{3}-\frac{2xy^{2}}{2}\right)_{1}^{y}=\left(x^{4}-x\right)_{1}^{x}+\left(x^{4}y^{3}-xy^{2}\right)_{1}^{y}=x^{4}-x-\left(1^{4}-1\right)+\left(x^{4}y^{3}-xy^{2}\right)-\left(x^{4}\cdot1^{3}-x\cdot1^{2}\right)=x^{4}-x^{4}-x^{4}+x^{4}$$

$$= x^4 - x + x^4y^3 - xy^2 - x^4 + x = x^4y^3 - xy^2 + C$$

Результат верен, если
$$\frac{\partial u(x,y)}{\partial x} = P(x,y), \frac{\partial u(x,y)}{\partial y} = Q(x,y)$$

$$\frac{\partial}{\partial x} \left(x^4 y^3 - x y^2 + C \right) = \left(x^4 y^3 \right)'_x - \left(x y^2 \right)'_x = 4 x^{4-1} y^3 - y^2 = 4 x^3 y^3 - y^2$$

$$\frac{\partial}{\partial y} \left(x^4 y^3 - x y^2 + C \right) = \left(x^4 y^3 \right)'_y - \left(x y^2 \right)'_y = 3 x^4 y^{3-1} - x \cdot 2 y^{2-1} = 3 x^4 y^2 - 2 x y^{2-1} = 3 x^4 y^2 - 2 x y^2 + C = 3 x^4 y^2 + C$$

OTBET: $u(x, y) = x^4y^3 - xy^2 + C$

Решение задач и примеров

Группа ВКонтакте https://vk.com/fizmathim_resh

Перейти на Готовые решения ИДЗ Рябушко (по вариантам)

Решение задач по высшей математике на заказ

Перейти на Бесплатные решенные примеры по высшей математике

2. Решить следующие задачи

2.0. Вычислить работу силы $F = (x^2 + y^2 + 1)i + 2xyj$ вдоль дуги параболы $y = x^3$, заключенной между точками A(0,0) и B(1,1).

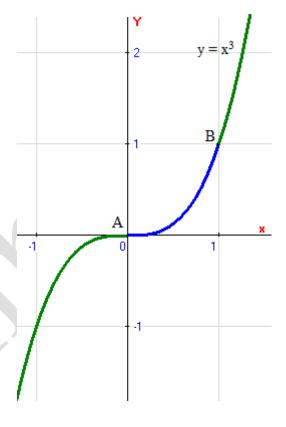
Решение:

Пусть $\vec{F} = P(x,y) \cdot \hat{i} + Q(x,y) \cdot \hat{j}$ есть переменная сила, совершающая работу А вдоль пути L, функции P(x,y) и Q(x,y) непрерывны на кривой L, тогда работа силы равна

$$A = \int_{L} P(x, y) dx + Q(x, y) dy$$
$$y = x^{3} dy = 3x^{2} dx$$

Переменная x в данном направлении изменяется от $x_1 = 0$ до $x_2 = 1$

Пределы интегрирования $0 \le x \le 1$



Тогда работа силы А равна:

$$A = \int_{L} (x^{2} + y^{2} + 1) dx + 2xy dy = \int_{0}^{1} (x^{2} + (x^{3})^{2} + 1) dx + 2x \cdot x^{3} \cdot 3x^{2} dx = \int_{0}^{1} (x^{2} + x^{6} + 1) dx + 6x^{6} dx =$$

$$= \int_{0}^{1} (x^{2} + x^{6} + 1 + 6x^{6}) dx = \int_{0}^{1} (x^{2} + 7x^{6} + 1) dx = \left(\frac{x^{3}}{3} + \frac{7x^{7}}{7} + x\right) \Big|_{0}^{1} = \left(\frac{x^{3}}{3} + x^{7} + x\right) \Big|_{0}^{1} = \left(\frac{1^{3}}{3} + 1^{7} + 1\right) - \left(\frac{0^{3}}{3} + 0^{7} + 0\right) = \frac{1}{3} + 1 + 1 = \frac{1}{3} + 2 = \frac{7}{3}$$