Группа ВКонтакте https://vk.com/fizmathim_resh

Перейти на Готовые решения ИДЗ Рябушко (по вариантам)

Решение задач по высшей математике на заказ

Перейти на Бесплатные решенные примеры по высшей математике

ИДЗ 18.1 – Вариант 0

Решить следующие задачи (1-6)

1.0. В шахматном турнире участвовало 12 шахматистов, каждый из них сыграл с каждым по одной партии. Сколько всего сыграно партий?

Решение:

В одной игре участвуют 2 человека, следовательно, нужно вычислить, сколькими способами можно отобрать 2-х человек из 12, причем порядок в таких парах не важен. Воспользуемся формулой для нахождения числа сочетаний (выборок, отличающихся только составом) из п различных элементов по m элементов

Сочетаниями называют комбинации, составленные из п различных элементов по m элементов, которые отличаются хотя бы одним элементом. Число сочетаний

$$C_n^m = \frac{n!}{m! (n-m)!}$$

где $n! = 1 \cdot 2 \cdot 3 \dots n$. n=12, m=2

Тогда решаем

$$C_{12}^2 = \frac{12!}{2!(12-2)!} = \frac{12!}{2!10!} = \frac{11 \cdot 12}{1 \cdot 2} = 11 \cdot 6 = 66$$

В процессе решения исключили 10! из 12!, т.е. сократили произведение $12! = 1 \cdot 2 \cdot 3 \cdot ... \cdot 12$ на $10! = 1 \cdot 2 \cdot 3 \cdot ... \cdot 10$, остались после сокращения множители 11 и 12).

Ответ: 66

2.0. Из коробки, содержащей карточки с буквами «о», «е», «я», «п» «и» «ц» «р» «а», наугад вынимают одну карточку за другой и располагают в порядке извлечения. Какова вероятность того, что в результате получится слово «операция»?

Решение:

Используем классическое определение вероятности:

$$P = \frac{m}{n}$$
,

где m – число исходов, благоприятствующих осуществлению события, а n – число всех равновозможных элементарных исходов.

Число различных перестановок из букв «о», «е», «я», «п» «и» «ц» «р» «а» равно

$$n = 8! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 = 40320$$

из них только одна соответствует слову "операция" (m=1), поэтому по классическому определению вероятности вероятность того, что в результате получится слово «операция» равна

$$P = \frac{1}{40320} \approx 0,000025$$

Otbet:
$$P = \frac{1}{40320} \approx 0,000025$$

Группа ВКонтакте https://vk.com/fizmathim_resh

Перейти на Готовые решения ИДЗ Рябушко (по вариантам)

Решение задач по высшей математике на заказ

Перейти на Бесплатные решенные примеры по высшей математике

3.0. Вероятность того, что студент сдаст первый экзамен, равна 0.8, второй -0.6, третий -0.5. Вычислить вероятность того, что студент сдаст: а) один экзамен; б) не менее двух экзаменов; в) не более двух экзаменов.

Решение:

По условию $p_1 = 0.8$; $p_2 = 0.6$; $p_3 = 0.5$ — вероятности того, что студент сдаст соответствующие экзамены. Тогда вероятности того, что он их не сдаст.

$$q_1 = 1 - p_1 = 1 - 0.8 = 0.2$$

$$q_2 = 1 - p_2 = 1 - 0.6 = 0.4$$

$$q_3 = 1 - p_3 = 1 - 0.5 = 0.5$$

а) По теоремам сложения несовместных и умножения независимых событий найдем вероятность того, что студент сдаст один экзамен

$$p(1) = p_1 q_2 q_3 + q_1 p_2 q_3 + q_1 q_2 p_3 = 0.8 \cdot 0.4 \cdot 0.5 + 0.2 \cdot 0.6 \cdot 0.5 + 0.2 \cdot 0.4 \cdot 0.5 = 0.16 + 0.06 + 0.04 = 0.26$$

б) Используем теорему сложения несовместных и умножения независимых событий, найдем вероятность того, что студент сдаст не менее двух экзаменов

$$p(m \ge 2) = p_1 p_2 q_3 + p_1 q_2 p_3 + q_1 p_2 p_3 + p_1 p_2 p_3 = 0.8 \cdot 0.6 \cdot 0.5 + 0.8 \cdot 0.4 \cdot 0.5 + 0.2 \cdot 0.6 \cdot 0.5 + 0.8 \cdot 0.6 \cdot 0.5 = 0.24 + 0.16 + 0.06 + 0.24 = 0.7$$

в) По теореме сложения вероятностей противоположных событий найдем вероятность того, что студент сдаст не более двух экзаменов

$$p(m \le 2) = 1 - p_1 p_2 p_3 = 1 - 0.8 \cdot 0.6 \cdot 0.5 = 1 - 0.24 = 0.76$$

Ответ: а) 0,26; б) 0,7; в) 0,76.

4.0. На участке, где изготавливаются болты, первый станок производит 35 %, второй – 40, третий – 25 % всех изделий. В продукции каждого из станков брак составляет соответственно 6, 4 и 3 %. Найти вероятность того, что: а) взятый наугад болт – с дефектом; б) случайно взятый болт с дефектом изготовлен на втором станке.

Решение:

По условию вероятности того, что изготавливаются болты на первом, втором и третьем станке равны $p_1 = 35\% = 0.35; \; p_2 = 40\% = 0.4; \; p_3 = 25\% = 0.25$

Вероятности в продукции каждого из трех станков брака соответственно равны

$$\vec{p}_1 = 6\% = 0.06; \ \vec{p}_2 = 4\% = 0.04; \ \vec{p}_3 = 3\% = 0.03$$

а) Найдем вероятность того, что взятый наугад болт – с дефектом

Тогда по формуле полной вероятности:

$$p(H) = p_1 p_1 + p_2 p_2 + p_3 p_3 = 0.35 \cdot 0.06 + 0.4 \cdot 0.04 + 0.25 \cdot 0.03 = 0.021 + 0.016 + 0.0075 = 0.0445$$

б) Найдем вероятность того, что случайно взятый болт с дефектом изготовлен на втором станке Пусть событие М – это то, что взятый болт изготовлен на втором станке По формуле Бейеса (формула вероятностей гипотез):

Группа ВКонтакте https://vk.com/fizmathim_resh

Перейти на Готовые решения ИДЗ Рябушко (по вариантам)

Решение задач по высшей математике на заказ

Перейти на Бесплатные решенные примеры по высшей математике

$$p(M) = {p_2 p_2 \over p(H)} = {0.4 \cdot 0.04 \over 0.0445} = {0.016 \over 0.0445} = 0.3596$$

Ответ: а) 0,0445; б) 0,3596.

5.0. Вероятность поражения цели при одном выстреле равна 0,6. Произведено 10 выстрелов. Найти вероятность поражения цели: а) шесть раз; б) наивероятнейшее число раз; в) хотя бы один раз.

Решение:

Используем формулу Бернулли

$$P_n(m) = P_n^m = C_n^m \cdot p^m \cdot q^{n-m}$$
 (1)

В данной задаче n = 10, количество произведенных выстрелов по цели

Вероятность поражения цели при одном выстреле р = 0,6

Вероятность промаха по цели q = 1 - p = 1 - 0.6 = 0.4

а) найдем вероятность поражения цели шесть раз

Тогда, подставляем в выражение (1) исходные данные задачи, запишем

$$P_{10}(6) = P_{10}^6 = C_{10}^6 \cdot p^6 \cdot q^{10-6} = C_{10}^6 \cdot p^6 \cdot q^4$$

Вычислим искомую вероятность

$$P_{10}(6) = P_{10}^{6} = \frac{10!}{6!(10-6)!} \cdot (0,6)^{6} \cdot (0,4)^{4} = \frac{10!}{6!\cdot 4!} \cdot 0,046656 \cdot 0,0256 = \frac{7 \cdot 8 \cdot 9 \cdot 10}{1 \cdot 2 \cdot 3 \cdot 4} \cdot 0,0011944 = 210 \cdot 0,0011944 \approx 0.2508$$

В процессе решения исключили 6! из 10!, т.е. сократили произведение $10! = 1 \cdot 2 \cdot 3 \cdot ... \cdot 10$ на $6! = 1 \cdot 2 \cdot 3 \cdot ... \cdot 6$, остались после сокращения множители 7, 8, 9 и 10.

б) найдем вероятность поражения цели наивероятнейшее число раз

Поскольку n = 10; p = 0.6; q = 0.4

Наивероятнейшее число наступлений события А в п испытаниях можно определить из двойного неравенства

$$np - q \le m \le np + p$$

Тогда

$$10 \cdot 0.6 - 0.4 \le m \le 10 \cdot 0.6 + 0.6$$
$$6 - 0.4 \le m \le 6 + 0.6$$
$$5.6 \le m \le 6.6$$

Отсюда видим, что наивероятнейшее число поражения цели m = 6

Так как в пункте а) мы нашли вероятность поражения цели m=6 раз, тогда

$$P_{10}^6 = 0.2508$$

в) найдем вероятность поражения цели хотя бы один раз

По теореме сложения вероятностей противоположных событий

$$P(m \ge 1) = 1 - P_{10}^{0} = 1 - C_{10}^{0} \cdot p^{0} \cdot q^{10} = 1 - \frac{10!}{0!(10 - 0)!} \cdot (0.6)^{0} \cdot (0.4)^{10} = 1 - \frac{10!}{10!} \cdot 1 \cdot 0.0001048576 = 1 - \frac{10!}{10!} \cdot 1 \cdot 0.0001048 = 1 - \frac{10!}{10!} \cdot 1 \cdot 0.0001048 = 1 - \frac{10!}{10!} \cdot 1 \cdot 0.0001048 = 1 - \frac{10!}{10!} \cdot 1 \cdot 0.0001048576 = 1 - \frac{10!}{10!} \cdot 1 \cdot 0.0001048 = 1 - \frac{10!}{10!} \cdot 0.0001048 = 1 - \frac{10!}{10!} \cdot 0.0001048 = 1 - \frac{10!}{10!} \cdot 0.0001048 = 1 - \frac$$

 $=1-0.0001048576=0.9998951424\approx0.9999$

Ответ: а) 0,2508; б) 0,2508; в) 0,9999

Группа ВКонтакте https://vk.com/fizmathim_resh

Перейти на Готовые решения ИДЗ Рябушко (по вариантам)

Решение задач по высшей математике на заказ

Перейти на Бесплатные решенные примеры по высшей математике

6.0. Вероятность появления события в каждом из независимых испытаний равна 0,3. Найти вероятность того, что событие наступит 36 раз в 120 испытаниях.

Решение:

Используем локальную теорему Лапласа. Вероятность того, что в n независимых испытаниях событие A наступит ровно m раз

$$P_n(m) \approx \frac{1}{\sqrt{npq}} \cdot \varphi(x)$$

где $\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$; $x = \frac{m-np}{\sqrt{npq}}$; p — вероятность наступления события A в отдельном испытании; $q = \frac{m-np}{\sqrt{npq}}$

1 - p

Функция $\phi(x)$ – четная

$$P_{n}(m) \approx \frac{1}{\sqrt{npq}} \cdot \varphi \left(\frac{m-np}{\sqrt{npq}}\right)$$
 (1)

По условию задачи количество испытаний n=120, событие наступит m=36 раз Вероятность появления события в каждом из независимых испытаний равна p=0,3; Вероятность того, что событие не появится в каждом из независимых испытаний, равна q=1-p=1-0,3=0,7

Подставляем числовые данные в выражение (1)

 $= 0.1992 \cdot 0.3989 \approx 0.0795$

По таблице нашли значение локальной функции Лапласа $\phi(0) \approx 0.3989$

Ответ: 0,0795