Группа ВКонтакте https://vk.com/fizmathim_resh

Перейти на Готовые решения ИДЗ Рябушко (по вариантам)

Решение задач по высшей математике на заказ

Перейти на Бесплатные решенные примеры по высшей математике

ИДЗ 18.2 – Вариант 0

- **1.** Найти закон распределения указанной дискретной СВ X и ее функцию распределения F(x). Вычислить математическое ожидание M(X), дисперсию D(X) и среднее квадратичное отклонение $\sigma(X)$. Построить график функции распределения F(x)
- **1.0.** Из партии в 10 изделий, среди которых имеется два нестандартных, для проверки качества выбраны случайным образом 3 изделия; СВ X число нестандартных изделий среди проверяемых.

Решение:

Случайная величина X может принимать значения

$$x_0 = 0$$
, $x_1 = 1$, $x_2 = 2$, $x_3 = 3$

Воспользуемся формулой Бернулли. Если производится n независимых испытаний, при каждом из которых вероятность осуществления события A постоянна и равна p, а вероятность противоположного события равна q = 1 - p, то вероятность того, что при этом событие A осуществляется ровно p раз, вычисляется p формуле

$$P_n(m) = C_n^m \cdot p^m \cdot q^{n-m}$$

где C_n^m – число сочетаний из n элементов по m.

Для данного случая n = 3; m = 0,1,2,3;

p = 2/10=1/5; - вероятность того, что в партии из 10 изделий имеется 2 нестандартных q = 1 - p = 1 - 1/5 = 4/5 – вероятность того, что остальные изделия окажутся стандартными

Тогда запишем вероятности

$$P(x = 0) = P_0 = C_3^0 \cdot p^0 \cdot q^{3-0} = C_3^0 \cdot p^0 \cdot q^3 = \frac{3!}{3!} \cdot \left(\frac{1}{5}\right)^0 \cdot \left(\frac{4}{5}\right)^3 = 1 \cdot 1 \cdot \frac{64}{125} = \frac{64}{125}$$

$$P(x = 1) = P_1 = C_3^1 \cdot p^1 \cdot q^{3-1} = C_3^1 \cdot p^1 \cdot q^2 = \frac{3!}{1! \cdot 2!} \cdot \left(\frac{1}{5}\right)^1 \cdot \left(\frac{4}{5}\right)^2 = 3 \cdot \frac{1}{5} \cdot \frac{16}{25} = \frac{48}{125}$$

$$P(x = 2) = P_2 = C_3^2 \cdot p^2 \cdot q^{3-2} = C_3^2 \cdot p^2 \cdot q^1 = \frac{3!}{2! \cdot 1!} \cdot \left(\frac{1}{5}\right)^2 \cdot \left(\frac{4}{5}\right)^1 = 3 \cdot \frac{1}{25} \cdot \frac{4}{5} = \frac{12}{125}$$

$$P(x = 3) = P_3 = C_3^3 \cdot p^3 \cdot q^{3-3} = C_3^3 \cdot p^3 \cdot q^0 = \frac{3!}{3! \cdot 1!} \cdot \left(\frac{1}{5}\right)^3 \cdot \left(\frac{4}{5}\right)^0 = 1 \cdot \frac{1}{125} \cdot 1 = \frac{1}{125}$$

Таким образом, искомый закон распределения

Xi	0	1	2	3
p(i)	64/125	48/125	12/125	1/125

Проверка:
$$\frac{64}{125} + \frac{48}{125} + \frac{12}{125} + \frac{1}{125} = 1$$

Группа ВКонтакте https://vk.com/fizmathim_resh

Перейти на Готовые решения ИДЗ Рябушко (по вариантам)

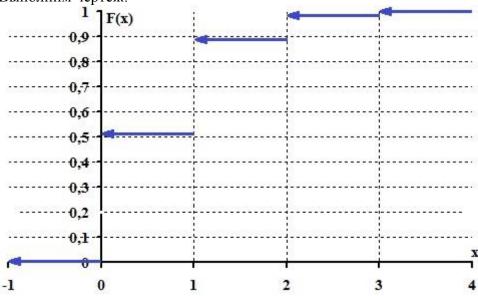
Решение задач по высшей математике на заказ

Перейти на Бесплатные решенные примеры по высшей математике

Составим функцию распределения:

$$F(X) = \begin{cases} 0 \text{ при } x \le 0, \\ \frac{64}{125} \text{ при } 0 < x \le 1, \\ \frac{112}{125} \text{ при } 1 < x \le 2, \\ \frac{124}{125} \text{ при } 2 < x \le 3, \\ 1 \text{ при } x > 3 \end{cases}$$

Выполним чертеж:



Вычислим математическое ожидание M(X), дисперсию D(X) и среднее квадратическое отклонение $\sigma(X)$.

Математическое ожидание равно:

$$M(X) = X_i p(i) = 0 \cdot \frac{64}{125} + 1 \cdot \frac{48}{125} + 2 \cdot \frac{12}{125} + 3 \cdot \frac{1}{125} = \frac{48}{125} + \frac{24}{125} + \frac{3}{125} = \frac{75}{125} = \frac{3}{5} = 0,6$$

$$M\left(X^{2}\right) = X_{i}^{2}p(i) = 0^{2} \cdot \frac{64}{125} + 1^{2} \cdot \frac{48}{125} + 2^{2} \cdot \frac{12}{125} + 3^{2} \cdot \frac{1}{125} = \frac{48}{125} + \frac{48}{125} + \frac{9}{125} = \frac{105}{125} = \frac{21}{25} = 0,84$$

Дисперсия равна

$$D(X) = M(X^2) - (M(X))^2$$

$$D(X) = 0.84 - 0.6^2 = 0.84 - 0.36 = 0.48$$

Среднее квадратическое отклонение:

$$\sigma(X) = \sqrt{D(X)} = \sqrt{0.48} = 0.69$$

Otbet:
$$M(X) = 0.6$$
, $D(X) = 0.48$, $\sigma(X) = 0.69$

Группа ВКонтакте https://vk.com/fizmathim_resh

Перейти на Готовые решения ИДЗ Рябушко (по вариантам)

Решение задач по высшей математике на заказ

Перейти на Бесплатные решенные примеры по высшей математике

2. Дана функция распределения F(x) CB X. Найти плотность распределения вероятностей f(x), математическое ожидание M(X), дисперсию D(X) и вероятность попадания CB X на отрезок [a;b]. Построить графики функций F(x) и f(x).

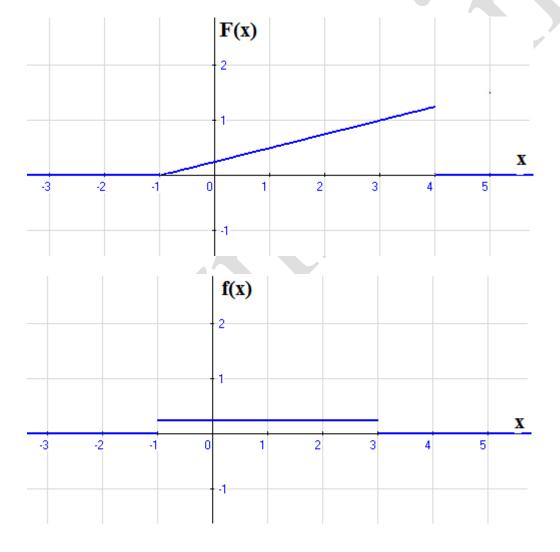
2.0.
$$F(x) = \begin{cases} 0, & \text{при } x < -1, \\ \frac{1}{4}(x+1) & \text{при } -1 \le x \le 3, \quad a = 1, b = 3 \\ 1 & \text{при } x > 3 \end{cases}$$

Решение:

Найдем функцию плотности распределения вероятностей:

$$f(x) = F'(x) = \begin{cases} 0, & \text{при } x < -1, \\ \frac{1}{4} & \text{при } -1 \le x \le 3, \\ 0 & \text{при } x > 3 \end{cases}$$

Построим графики функций F(x) и f(x)



Группа ВКонтакте https://vk.com/fizmathim_resh

Перейти на Готовые решения ИДЗ Рябушко (по вариантам)

Решение задач по высшей математике на заказ

Перейти на Бесплатные решенные примеры по высшей математике

Вычисляем математическое ожидание и дисперсию.

Математическое ожидание определяется выражением

$$M(X) = \int_{-\infty}^{+\infty} x f(x) dx$$

Тогда

$$M(X) = \int_{-1}^{3} x \cdot \frac{1}{4} dx = \frac{1}{4} \int_{-1}^{3} x dx = \frac{1}{4} \cdot \frac{x^{1+1}}{1+1} \Big|_{-1}^{3} = \frac{1}{4} \cdot \frac{x^{2}}{2} \Big|_{-1}^{3} = \frac{x^{2}}{8} \Big|_{-1}^{3} = \frac{3^{2}}{8} - \frac{(-1)^{2}}{8} = \frac{9}{8} - \frac{1}{8} = \frac{8}{8} = 1$$

Вычисляем

$$\mathbf{M}(\mathbf{X}^{2}) = \int_{-1}^{3} \mathbf{x}^{2} \cdot \frac{1}{4} d\mathbf{x} = \frac{1}{4} \int_{-1}^{3} \mathbf{x}^{2} d\mathbf{x} = \frac{1}{4} \cdot \frac{\mathbf{x}^{2+1}}{2+1} \Big|_{-1}^{3} = \frac{1}{4} \cdot \frac{\mathbf{x}^{3}}{3} \Big|_{-1}^{3} = \frac{\mathbf{x}^{3}}{12} \Big|_{-1}^{3} = \frac{3^{3}}{12} - \frac{(-1)^{3}}{12} = \frac{27}{12} + \frac{1}{12} = \frac{28}{12} = \frac{7}{3} = 2,333$$

Дисперсия равна

$$D(X) = M(X^2) - (M(X))^2$$

$$D(X) = \frac{7}{3} - 1^2 = \frac{7}{3} - 1 = \frac{4}{3} = 1,333$$

Найдем вероятность того, что X примет значение из отрезка [1; 3]

$$P\big(1 \leq X \leq 3\big) = F\big(3\big) - F\big(1\big) = \frac{1}{4}\big(3+1\big) - \frac{1}{4}\big(1+1\big) = \frac{1}{4} \cdot 4 - \frac{1}{4} \cdot 2 = 1 - \frac{1}{2} = \frac{1}{2} = 0,5 \ \text{- искомая вероятность}$$

OTBET:
$$M(X) = 1$$
, $D(X) = 1,333$, $P(1 \le X \le 3) = 0.5$

- 3. Решить следующие задачи.
- **3.0.** CB X распределена нормально с математическим ожиданием 50 и дисперсией 144. Вычислить вероятность попадания CB X в интервал (26; 98).

Решение:

Если плотность распределения вероятностей случайной величины Х

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-a)^2}{2\sigma^2}} \tag{*}$$

то такое распределение случайной величины X называется нормальным. Входящие в формулу (*) величины а и σ являются соответственно математическим ожиданием и средним квадратичным отклонением распределенной нормально случайной величины X

Для нормального распределения, вероятность того, что X примет значение, принадлежащее интервалу $(\alpha; \beta)$ равна:

$$P(\alpha < X < \beta) = \Phi\left(\frac{\beta - a}{\sigma}\right) - \Phi\left(\frac{\alpha - a}{\sigma}\right)$$

где $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-\frac{t^2}{2}} dt$ - функция Лапласа, значения которой определяются в приложении

По условию
$$a=50,\ \sigma=\sqrt{\delta}=\sqrt{144}=12$$
 , $\alpha=26,\ \beta=98.$ где δ — дисперсия

Группа ВКонтакте https://vk.com/fizmathim_resh

Перейти на Готовые решения ИДЗ Рябушко (по вариантам)

Решение задач по высшей математике на заказ

Перейти на Бесплатные решенные примеры по высшей математике

Тогда вычисляем

$$P(26 < X < 98) = \Phi\left(\frac{98 - 50}{12}\right) - \Phi\left(\frac{26 - 50}{12}\right) = \Phi\left(\frac{48}{12}\right) - \Phi\left(\frac{-24}{12}\right) = \Phi(4) - \Phi(-2) = 0,499968 + 0,4772 = 0,977168 \approx 0,9772$$

По таблице значений функции Лапласа нашли $\Phi(4) = 0,499968; \ \Phi(2) = 0,4772$

OTBET: $P(26 < X < 98) \approx 0.9772$

4. Решить следующие задачи.

4.0. Математическое ожидание количества выпадающих в течение года в данной местности осадков составляет 60 см. Оценить вероятность того, что в этой местности осадков выпадет не менее 180 см.

Решение:

Если случайная величина X неотрицательная и имеет конечное математическое ожидание, то для любого положительного числа $\epsilon > 0$ справедливо неравенство

$$P(X \ge \varepsilon) \le \frac{M(X)}{\varepsilon}$$
 (неравенство Маркова).

Пусть случайная величина X — число выпадающих в течение года в данной местности осадков По условию математическое ожидание M(X)=60

Отклонение $\varepsilon = 180$

Так как о дисперсии СВ X мы ничего не знаем, используем форму неравенства Маркова:

$$P(X \ge 180) \le \frac{60}{180} = \frac{1}{3} \approx 0,3333$$
$$P(X \ge 180) \le 0,3333$$

Ответ: не более 0,3333