Решение задач и примеров

Группа ВКонтакте https://vk.com/fizmathim_resh

Перейти на Готовые решения ИДЗ Рябушко (по вариантам)

Решение задач по высшей математике на заказ

Перейти на Бесплатные решенные примеры по высшей математике

ИДЗ 3.1 – Вариант 0

Даны четыре точки $A_1(x_1, y_1, z_1), A_2(x_2, y_2, z_2), A_3(x_3, y_3, z_3), A_4(x_4, y_4, z_4)$

Составить уравнения:

- а) плоскости $A_1A_2A_3$; б) прямой A_1A_2 ;
- в) прямой A_4M , перпендикулярной к плоскости $A_1A_2A_3$;
- г) прямой A_3N , параллельной прямой A_1A_2 ;
- д) плоскости, проходящей через точку A_4 перпендикулярно к прямой A_1A_2 .

Вычислить:

- е) синус угла между прямой A_1A_4 и плоскостью $A_1A_2A_3$;
- ж) косинус угла между координатной плоскостью Оху и плоскостью $A_1A_2A_3$;

1.0
$$A_1(2, -3, 5), A_2(6, 8, -3), A_3(2, 6, -4), A_4(8, 4, 7)$$

а) уравнение плоскости $A_1A_2A_3$

Используя формулу уравнения плоскости по трем точкам $\begin{vmatrix} x-x_1 & y-y_1 & z-z_1 \\ x_2-x_1 & y_2-y_1 & z_2-z_1 \\ x_3-x_1 & y_3-y_1 & z_3-z_1 \end{vmatrix} = 0 \text{, составляем}$

уравнение плоскости $A_1A_2A_3$:

$$\begin{vmatrix} x-2 & y+3 & z-5 \\ 6-2 & 8+3 & -3-5 \\ 2-2 & 6+3 & -4-5 \end{vmatrix} = 0 \Rightarrow \begin{vmatrix} x-2 & y+3 & z-5 \\ 4 & 11 & -8 \\ 0 & 9 & -9 \end{vmatrix} = 0$$

$$(x-2)(-99+72)-(y+3)(-36+0)+(z-5)(36-0)=0$$

$$-27(x-2)+36(y+3)+36(z-5)=0$$

$$-27x+54+36y+108+36z-180=0$$

$$-27x+36y+36z-18=0$$

$$3x - 4y - 4z + 2 = 0 - y$$
равнение плоскости $A_1A_2A_3$

б) прямой А1А2

Учитывая уравнения прямой, проходящей через две точки, уравнения A_1A_2 можно записать в виде

$$\begin{split} \frac{x-x_1}{x_2-x_1} &= \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1} \text{, получаем:} \\ \frac{x-2}{6-2} &= \frac{y+3}{8+3} = \frac{z-5}{-3-5} \text{, тогда} \\ \frac{x-2}{4} &= \frac{y+3}{11} = \frac{z-5}{-8} - \text{уравнение прямой } A_1 A_2 \end{split}$$

в) прямой А₄М, перпендикулярной к плоскости А₁А₂А₃

Из условия перпендикулярности прямой A_4M и плоскости $A_1A_2A_3$ следует, что в качестве направляющего вектора s можно взять нормальный вектор n = (3, -4, -4) плоскости $A_1A_2A_3$. Тогда

уравнение прямой
$$A_4M$$
 с учетом уравнений $\frac{x-x_0}{k} = \frac{y-y_0}{l} = \frac{z-z_0}{m}$, запишется в виде

$$\frac{x-8}{3} = \frac{y-4}{-4} = \frac{z-7}{-4}$$

г) прямой A₃N, параллельной прямой A₁A₂;

Решение задач и примеров

Группа ВКонтакте https://vk.com/fizmathim_resh

Перейти на Готовые решения ИДЗ Рябушко (по вариантам)

Решение задач по высшей математике на заказ

Перейти на Бесплатные решенные примеры по высшей математике

Так как прямая A_3N параллельная прямой A_1A_2 , то их направляющие векторы $s_1 = s_2 = (4, 11, -8)$ Следовательно, уравнение прямой A_3N имеет вид

$$\frac{x-2}{4} = \frac{y-6}{11} = \frac{z+4}{-8}$$

д) плоскости, проходящей через точку A_4 перпендикулярно к прямой A_1A_2 .

T.к. искомая плоскость перпендикулярна прямой A_1A_2 , то её нормальным вектором будет

$$A_1A_2 = (4, 11, -8)$$

Получаем уравнение:

$$4(x-8)+11(y-4)-8(z-7)=0$$

$$4x - 32 + 11y - 44 - 8z + 56 = 0$$

$$4x + 11y - 8z - 20 = 0$$

е) синус угла между прямой A_1A_4 и плоскостью $A_1A_2A_3$

Уравнение прямой А₁А

$$\frac{x-2}{8-2} = \frac{y+3}{4+3} = \frac{z-5}{7-5}$$
, тогда

$$\frac{x-2}{6} = \frac{y+3}{7} = \frac{z-5}{2}$$

$$3x-4y-4z+2=0-$$
уравнение плоскости $A_1A_2A_3$

По формуле $\sin \phi = \frac{\left|Ak + Bl + Cm\right|}{\sqrt{A^2 + B^2 + C^2} \sqrt{k^2 + l^2 + m^2}}$ вычисляем угол между прямой и плоскостью

$$\sin \varphi = \frac{\left|3 \cdot 6 + (-4) \cdot 7 + (-4) \cdot 2\right|}{\sqrt{3^2 + (-4)^2 + (-4)^2} \sqrt{6^2 + 7^2 + 2^2}} = \frac{\left|18 - 28 - 8\right|}{\sqrt{9 + 16 + 16} \cdot \sqrt{36 + 49 + 4}} = \frac{18}{6,403 \cdot 9,43} = 0,298$$

$$\varphi = \arcsin(0,298) \approx 17^{\circ}$$

ж) косинус угла между координатной плоскостью Oxy и плоскостью $A_1A_2A_3$;

Согласно формуле

$$\cos \varphi = \frac{\mathbf{n}_1 \cdot \mathbf{n}_2}{\left| \mathbf{n}_1 \right| \left| \mathbf{n}_2 \right|} = \frac{\mathbf{x}_1 \mathbf{x}_2 + \mathbf{y}_1 \mathbf{y}_2 + \mathbf{z}_1 \mathbf{z}_2}{\sqrt{\mathbf{x}_1^2 + \mathbf{y}_1^2 + \mathbf{z}_1^2} \sqrt{\mathbf{x}_2^2 + \mathbf{y}_2^2 + \mathbf{z}_2^2}}$$

$$n_1 = (0, 0, 1); n_2 = (3, -4, -4)$$

Находим косину с угла между плоскостью Оху и плоскостью ${\rm A_1A_2A_3}$

$$\cos \varphi = \frac{0 \cdot 3 + 0 \cdot (-4) + 1 \cdot (-4)}{\sqrt{0^2 + 0^2 + 1^2} \sqrt{3^2 + (-4)^2 + (-4)^2}} = \frac{-4}{\sqrt{41}} = \frac{-4}{6,403} = -0,625$$

Решение задач и примеров

Группа ВКонтакте https://vk.com/fizmathim_resh

Перейти на Готовые решения ИДЗ Рябушко (по вариантам)

Решение задач по высшей математике на заказ

Перейти на Бесплатные решенные примеры по высшей математике

2. Решить следующие задачи

2.0 Написать уравнение плоскости проходящей через точки C(0;1;2) Д(-5;2;3) E(1; -2;1)

Решение:

Используя формулу уравнения плоскости по трем точкам

$$\begin{vmatrix} x - x_{C} & y - y_{C} & z - z_{C} \\ x_{\mathcal{I}} - x_{C} & y_{\mathcal{I}} - y_{C} & z_{\mathcal{I}} - z_{C} \\ x_{E} - x_{C} & y_{E} - y_{C} & z_{E} - z_{C} \end{vmatrix} = 0,$$

составляем уравнение плоскости СДЕ:

$$\begin{vmatrix} x - 0 & y - 1 & z - 2 \\ -5 - 0 & 2 - 1 & 3 - 2 \\ 1 - 0 & -2 - 1 & 1 - 2 \end{vmatrix} = 0 \Rightarrow \begin{vmatrix} x & y - 1 & z - 2 \\ -5 & 1 & 1 \\ 1 & -3 & -1 \end{vmatrix} = 0$$

$$x(1 \cdot (-1) - 1 \cdot (-3)) - (y - 1)((-5) \cdot (-1) - 1 \cdot 1) + (z - 2)((-5) \cdot (-3) - 1 \cdot 1) = 0$$

$$x(-1 + 3) - (y - 1)(5 - 1) + (z - 2)(15 - 1) = 0$$

$$2x-4(y-1)+14(z-2)=0$$

$$2x - 4y + 4 + 14z - 28 = 0$$

$$2x - 4y + 14z - 24 = 0$$

$$x - 2y + 7z - 12 = 0 - y p$$
авнение плоскости СДЕ

Ответ: x - 2y + 7z - 12 = 0 - yравнение плоскости СДЕ

3. Решить следующие задачи

3.0 Составьте уравнение плоскости, проходящей через точку M(-4; -2; 5) и перпендикулярно вектору AB, если A (3; -3; -7), B (9; 3; -7)

Решение:

Вектор
$$\overline{AB}(9-3, 3-(-3), -7-(-7))=(6, 6, 0)$$

Он является нормальным искомой плоскости.

$$\overline{n} = (A, B, C) = \overline{AB}(6, 6, 0)$$

Всякий (не равный нулю) вектор, перпендикулярный к данной плоскости, называется ее нормальным вектором. Уравнение определяет плоскость, проходящую через точку и $\mathbf{M}_0 = (\mathbf{x}_0, \mathbf{y}_0, \mathbf{z}_0)$ имеющей

нормальный вектор $\bar{n} = (A, B, C)$

$$A(x-x_0)+B(y-y_0)+C(z-z_0)=0$$

Подставляем данные, получаем:

$$6(x+4)+6(y+2)+0(z-5)=0$$

$$6x + 24 + 6y + 12 = 0$$

$$6x + 6y + 36 = 0$$

$$x + y + 6 = 0$$

Ответ: x + y + 6 = 0