Группа ВКонтакте https://vk.com/fizmathim_resh

Перейти на Готовые решения ИДЗ Рябушко (по вариантам)

Решение задач по высшей математике на заказ

Перейти на Бесплатные решенные примеры по высшей математике

ИДЗ 4.1 - Вариант 0

1. Составить канонические уравнения: а) эллипса; б) гиперболы; в) параболы $(A, B - \text{точки}, \text{лежащие на кривой}, F - фокус, а - большая (действительная) полуось, b - малая (мнимая) полуось, <math>\varepsilon$ - эксцентриситет, $y=\pm kx$ - уравнения асимптот гиперболы, D - директриса кривой, 2c - фокусное расстояние

1.0 a)
$$b = 4$$
, $F(3, 0)$; δ) $b = 3$, $F(5, 0)$; δ) D : δ

Решение:

а) Каноническое уравнение эллипса имеет вид

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

По условию задачи малая полуось b = 4, F(3, 0)

Tогда c = 3

Для эллипса выполняется равенство

$$a^2 = b^2 + c^2$$

Подставив в него значения b и с, найдем

$$a^2 = 4^2 + 3^2 = 16 + 9 = 25$$

$$a = \sqrt{25} = 5$$

Искомое уравнение эллипса

$$\frac{x^2}{25} + \frac{y^2}{16} = 1$$

б) Каноническое уравнение гиперболы имеет вид

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

По условию малая полуось и фокус F: b = 3, F(5, 0)

Для гиперболы справедливо равенство

$$b^2 = c^2 - a^2$$

Откуда a: $a^2 = c^2 - b^2$

гле c = 5

Поэтому
$$a^2 = 5^2 - 3^2 = 25 - 9 = 16$$

$$a = \sqrt{16} = 4$$

Искомое уравнение гиперболы

$$\frac{x^2}{16} - \frac{y^2}{9} = 1$$

в) Каноническое уравнение параболы в данном случае должно иметь вид $y^2 = 2px$, а уравнение ее директрисы $x = -\frac{p}{2}$

По условию задачи уравнение директрисы x = 6

Поэтому $6 = -\frac{p}{2} \Rightarrow p = -12$ и искомое каноническое уравнение параболы имеет вид

$$y^2 = -24x$$

Группа ВКонтакте https://vk.com/fizmathim_resh

Перейти на Готовые решения ИДЗ Рябушко (по вариантам)

Решение задач по высшей математике на заказ

Перейти на Бесплатные решенные примеры по высшей математике

2. Записать уравнение окружности, проходящей через указанные точки и имеющей центр в точке A. **2.0** Правую вершину гиперболы $9x^2 - 45y^2 = 225$, A(-1, -2)

Каноническое уравнение гиперболы имеет вид

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Тогда

$$\frac{9x^2}{225} - \frac{45y^2}{225} = 1$$
, следовательно $\frac{x^2}{25} - \frac{y^2}{5} = 1$

a = 5 Вершины в точках $A_1(-5, 0)$ и $A_2(5, 0)$

Правая вершина гиперболы $A_2(5, 0)$

Уравнение искомой окружности

$$(x+1)^2 + (y+2)^2 = R^2$$

Найдем радиус окружности

R = AA₂ =
$$\sqrt{(5+1)^2 + (0+2)^2}$$
 = $\sqrt{36+4}$ = $\sqrt{40}$

$$R^2 = 40$$

Получаем уравнение окружности

$$(x+1)^2 + (y+2)^2 = 40$$

Группа ВКонтакте https://vk.com/fizmathim_resh

Перейти на Готовые решения ИДЗ Рябушко (по вариантам)

Решение задач по высшей математике на заказ

Перейти на Бесплатные решенные примеры по высшей математике

- 3. Составить уравнение линии, каждая точка М которой удовлетворяет заданным условиям.
- **3.0** Отстоит от точки A(-2, 1) на расстоянии, в два раза большем, чем от точки B(4, 2)

Решение:

Пусть точка М(х; у) лежит на искомой линии

Тогда |AM| = 2|BM|,

$$AM = \sqrt{(x+2)^2 + (y-1)^2} \qquad BM = \sqrt{(x-4)^2 + (y-2)^2}$$

$$\sqrt{(x+2)^2 + (y-1)^2} = 2\sqrt{(x-4)^2 + (y-2)^2}$$

Возведем обе части в квадрат

$$(x+2)^{2} + (y-1)^{2} = 4(x-4)^{2} + 4(y-2)^{2}$$

$$(x^{2} + 4x + 4) + (y^{2} - 2y + 1) = 4(x^{2} - 8x + 16) + 4(y^{2} - 4y + 4)$$

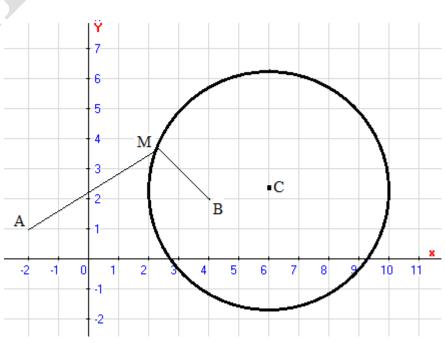
$$x^{2} + 4x + 4 + y^{2} - 2y + 1 = 4x^{2} - 32x + 64 + 4y^{2} - 16y + 16$$

$$4x^{2} - 32x + 64 + 4y^{2} - 16y + 16 - x^{2} - 4x - 4 - y^{2} + 2y - 1 = 0$$

$$3x^{2} - 36x + 3y^{2} - 14y + 75 = 0$$

Выделяем полные квадраты

$$3\left(x^2 - 2 \cdot 6x + (6)^2 - (6)^2\right) + 3\left(y^2 - \frac{14y}{3} + \left(\frac{7}{3}\right)^2 - \left(\frac{7}{3}\right)^2\right) = -75$$


$$3\left(x - 6\right)^2 + 3\left(y - \frac{7}{3}\right)^2 = -75 + 108 + \frac{49}{3}$$

$$3\left(x - 6\right)^2 + 3\left(y - \frac{7}{3}\right)^2 = \frac{-225 + 324 + 49}{3}$$

$$3\left(x - 6\right)^2 + 3\left(y - \frac{7}{3}\right)^2 = \frac{148}{3}$$

$$\left(x - 6\right)^2 + \left(y - \frac{7}{3}\right)^2 = \frac{148}{9} - \text{уравнение окружности}$$

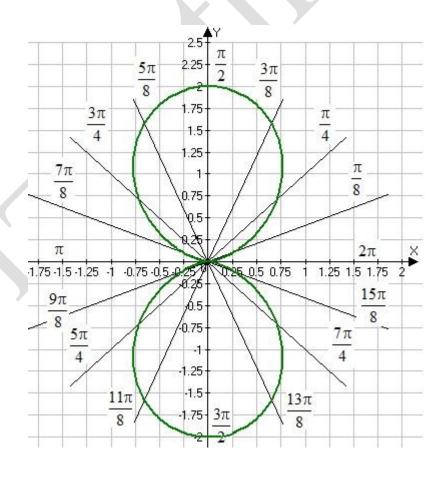
Центр
$$C(6, \frac{7}{3})$$
, Радиус $R = \frac{\sqrt{148}}{3}$

Группа ВКонтакте https://vk.com/fizmathim_resh

Перейти на Готовые решения ИДЗ Рябушко (по вариантам)

Решение задач по высшей математике на заказ

Перейти на Бесплатные решенные примеры по высшей математике


4. Построить кривую, заданную уравнение в полярной системе координат.

4.0
$$\rho = 1 - \cos 2\varphi$$

Составим таблицу, изменяя значения $\, \phi \,$ от $\, \phi = 0 \,$ до $\, \phi = 2 \,$ $\, \pi \,$ с промежутком $\, \frac{\pi}{8} \,$ и вычисляя

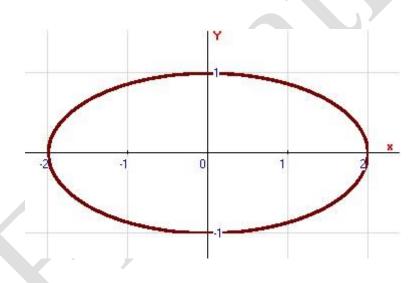
соответствующие значения р

соответствующие		
ρ_i		
0		
0,29		
1		
1,7		
2		
1,7		
1		
0,29		
0		
0,29		
1		
1,7		
2		
1,7		
1		
0,29		

Группа ВКонтакте https://vk.com/fizmathim_resh

Перейти на Готовые решения ИДЗ Рябушко (по вариантам)

Решение задач по высшей математике на заказ


Перейти на Бесплатные решенные примеры по высшей математике

5. Построить кривую, заданную параметрическими уравнениями $(0 \le t \le 2\pi)$

$$5.0 \quad \begin{cases} x = 2\sin 2t \\ y = \cos 2t \end{cases}$$

Составим таблицу, в которой приведены значения $x_i, y_i. t_i$

eeerasiiii raesiiidy, s kereper		
x_i	y _i	
0	1	
1,732	0,5	
2	0	
1,732	-0,5	
0	-1	
-1,732	-0,5	
-2	0	
-1,732	0,5	
0	1	
1,732	0,5	
2	0	
1,732	-0,5	
0	-1	
-1,732	-0,5	
-2	0	
-1,732	0,5	
0	1	
	$\begin{array}{c} x_i \\ 0 \\ 1,732 \\ 2 \\ 1,732 \\ 0 \\ -1,732 \\ -2 \\ -1,732 \\ 0 \\ 1,732 \\ 2 \\ 1,732 \\ 0 \\ -1,732 \\ 0 \\ -1,732 \\ -2 \end{array}$	

